Logo and Side Nav

News

Velit dreamcatcher cardigan anim, kitsch Godard occupy art party PBR. Ex cornhole mustache cliche. Anim proident accusamus tofu. Helvetica cillum labore quis magna, try-hard chia literally street art kale chips aliquip American Apparel.

Search

Browse News Archive

:

Friday, February 28, 2014

Gender, age, and ambiguity of selfies on Instagram

Gender and Age Distributions of Selfies


selfiecity.net research update by Mehrdad Yazdani, Research Scientist, Software Studies Initiative.



Who are the people behind selfies? Are they mostly young? Do women prefer taking selfies over men? Do these variations depend on geographic location? We looked at over 4,500 selfies from six cities to gain a sense of the different age groups and genders. (Analysis and visualizations of our findings for 3200 images from five cities from this dataset are available on selfiecity.net.)

We did this by first downloading a random sample of 140,000 images among all Instagram photos shared by people in central areas of 6 global cities for one whole week (Dec 4-12, 2013). Our random sample of Instagram photographs include:

  • 30,000 images from Tokyo
  • 30,000 images from New York
  • 20,000 images from Bangkok
  • 20,000 images from Berlin
  • 20,000 images from Moscow
  • 20,000 images from Sao Paulo
Now we have to figure out which of these images are actual selfies. We define the selfie as a photograph that you take of yourself. Since this definition can lead to a great deal of ambiguity, we ask several people to gain a better consensus. We utilize Amazon's Mechanical Turk service to find human reviewers (who are payed!) to review each image. At least 3 reviewers review each of the 140,000 images to find all the selfies. Obviously, in some cases, the reviewers disagree if an image is a genuine selfie or not. To resolve these disagreements, we use a simple majority vote (the mode of votes in statistics jargon) to make the final call as to whether the image is a selfie or not.

plot of chunk unnamed-chunk-2

What you see above is what we call the "selfie rate," that is, the percentage of selfies that our reviewers from Mechanical Turk found from the 140,000 images that we collected. What is most striking about this figure is that, in contrast to popular belief, the selfie is not ubiquitously plastered all over Instagram. In fact, Sao Paulo has a selfie rate clocking in at just under 5%! Tokyo, on the other hand, has an even significantly lower selfie rate of a hair above 1%.

But we don't stop at just finding selfies from our set of images. If a reviewer thinks that the image is indeed a selfie, he or she also takes a best guess at the gender and age of the selfie. Again, these are reviewers who use Mechanical Turk on a regular basis and therefore asking them to complete an image-tagging problem is on-par with their expertise. The graph above shows that the gender distribution of the selfies is heavily skewed towards females. Moscow in particular has a large disproportionate amount of female selfies. In fact, it is 4 times less likely that a selfie from Moscow is male (with a 95% confidence interval between 3.3 and 5.3).

However, it is not fair to assume that gender is a binary factor that we can neatly divide into "male" or "female." Would it be possible for us to have a way of measuring the ambiguity of a selfie's gender? Answering such a question is extremely difficult, but let's take a data science approach (read: hack). We will make an assumption that if it is difficult to ascertain a selfie's gender as "male" or "female" then our reviewers from Mechanical Turk will have a harder time making a decision. Since we have multiple reviewers (at least 3 or more), then there will be more disagreements if it is truly difficult for the reviewers to determine the selfie's gender. Let's assign a confidence score between 0 and 1 to the collective agreement of the reviewers for the gender of the selfie. What follows are the averages of gender discrimination confidence for the different cities:

plot of chunk unnamed-chunk-3

We see some very interesting patterns emerging from this figure. Over the entire population, we see that the reviewers are fairly confident (over 95%) of a selfie's gender. However, consistently for every city, the average gender confidence for males is less than those of females. In the case of Berlin, this difference may very well be insignificant and due to chance, but for the other cities we see much wider gap in confidence. Especially in the case of Sao Paulo and Moscow, the reviewers are much more confident at detecting females than the other cities. One possible interpretation: What makes these cities unique is that women in these cities are unquestionably "female looking" (at least when they take their selfies and post them), so the confidence reviewers have for these female selfies is higher.

We next take a look at the age distributions of the selfies. Here they are organized by city and gender:

plot of chunk unnamed-chunk-4

The most dramatic result here is that for every city we see that men who take selfies are older than their female counterparts. Bangkok has the youngest selfie enthusiasts, while New Yorkers have the oldest. If we look on a log-scale, as the age of a selfie increases, the odds of the selfie being male increases by a factor of 6.7 (with a 95% confidence interval between 4.99 and 9.03). Overall, however, the early twenty somethings dominate selfies on Instagram. As before, we determine the age of the selfie by asking several reviewers to make their best guess. We then estimate the age of the selfie by taking the median of the guesses of the reviewers. As in the case for determining gender, this can be a very difficult task and certain selfies can be harder to answer. To ascertain the agreement level for a selfies age, we computed the standard deviation of the reviewers guesses. In this case, higher standard deviation suggests more disagreement among the reviewers. We refer to this standard deviation as the "disagreement." Below we show average disagreements for each city and gender:

plot of chunk unnamed-chunk-5

With the exception of Berlin and New York (that have the highest disagreements), female age discrimination has the least amount of disagreement. The difference between the disagreement levels of males and females in Berlin does not appear to be significant. By far, Bangkok has the least amount of disagreement for age discrimination of female selfies among all cities. It is difficult to ascertain why this is the case. We welcome any hypotheses for this finding!

In summary, our study suggests that selfies are not the dominant imagery shared on Instagram. We have also observed that the selfies are extremely popular by females and twenty somethings. We are planning more posts on softwarestudies.com about additional details and more results from selfiecity.net research, so check back to see them.

Tuesday, February 25, 2014

Video about our selfiecity.net project is now on YouTube and Vimeo


selfiecity from Moritz Stefaner on Vimeo.

http://selfiecity.net
Investigating the style of self-portraits (selfies) in five cities across the world.

Selfiecity investigates selfies using a mix of theoretic, artistic and quantitative methods:
We present our findings about the demographics of people taking selfies, their poses and expressions.
Rich media visualizations (imageplots) assemble thousands of photos to reveal interesting patterns.
The interactive selfiexploratory allows you to navigate the whole set of 3200 photos.
Finally, theoretical essays discuss selfies in the history of photography, the functions of images in social media, and methods and dataset.

Learn more at http://selfiecity.net





Thursday, February 20, 2014

Our new project Selfiecity Investigates the style of self-portraits (selfies) in five cities across the world.





Our new project is now online:

selfiecity.net


The project investigates selfies using a mix of theoretic, artistic and quantitative methods:

We present our findings about the demographics of people taking selfies, their poses and expressions.

Rich media visualizations (imageplots) assemble thousands of photos to reveal interesting patterns.

The interactive selfiexploratory allows you to navigate the whole set of 3200 photos.

Theoretical essays discuss selfies in the history of photography, the functions of images in social media, and our methods and dataset.


Tuesday, February 11, 2014

An Outline for Computational Art History



The Hawaiian Star, 5930 front pages, 1893-1912 (Vimeo). Created by UCSD undergraduate student Cyrus Kiani in Manovich's visualization class, 2012.



An Outline for Computational Art History


Computational art history - use of algorithms for the analysis and visualization of patterns in art production, dissemination, reception/interaction, and scholarship. (In other words: use of computers to augment human intellect and intuition.)


Three complementary ways to think about research projects and methods in computational art history:


1 | Which stage(s) in art circulation process do you want to analyze?
- production [example 1, example 2]
- dissemination [example]
- reception (visitors movements in a museum, user tags, professional art criticism publication, user searches, etc.) [example]
- user interaction with digital media [many possibilities for capturing data about the experience; the work is co-created by software and participant]
- institutions / exhibitions / collecting / publications / art sales / art world system [example 1, example 2]
- scholarship

and also:
influence [example]
artists networks [example]
interactions with other cultural areas
etc.


2 | What data types you want to analyze?
structured, unstructured
text, images, video, 3D shapes, spaces, networks of relations, geospatial data, movements capture, interactions capture


3 | Which stage(s) in data analysis workflow you will work on?
- acquire and clean data (media agnostic)
- organize data for analysis (media agnostic)
- feature extraction (automatic) (media specific) / adding metadata (media agnostic)
- exploratory visualization (media agnostic)
[however images and video allow for unique visualization techniques: example 1, example 2]
- (optional) data analysis using classical statistics and/or data science methods (media agnostic)





Lev Manovich, february 11, 2014.

Sunday, January 26, 2014

"Software, Globalization and Political Action" course co-taught by Manovich and Buck-Morss, Spring 2014, Graduate Center CUNY




#softclassgc (class Twitter hashtag)


SYLLABUS (Google Doc updated throughout the semester - we suggest you check it every weekend to see the updates)


Readings (Dropbox)





Locals and Tourists #2 (GTWA #1): New York

Top: a frame from A Man with a Movie Camera by Dziga Vertov, 1929.
Bottom: Visualization of locations of large number of photos in NYC shared on Flickr, from "Locals and Tourists" by Erik Fisher, 2009).


Spring 2013 course: Software, Globalization, and Political Action

Co-taught by Susan Buck-Morss (Political Science) and Lev Manovich (Computer Science). The Graduate Center, City University of New York (CUNY)

Tuesdays 2-4pm.
4 Credits. Cross-listed in the Programs in Political Science, Computer Science and Art History.




Description:

This interdisciplinary seminar will explore concepts and methods from both critical theory and software studies. It is taught by Prof. Susan Buck-Morss (Political Science), and Prof. Lev Manovich (Computer Science).

We will cover three themes:

1) Vision and Image - From Walter Benjamin and Dziga Vertov to computer vision, Google Earth, Adobe Creative Suite, and Instagram: new strategies of seeing and representation in modern and software societies. Image v. Concept (Hegel against ‘picture thinking’) Image and historical matter (Benjamin on the “dialectical image”). Aesthetics and Politics: Images as a (trans-local) language for political action; vision and democracy: the “ethical turn.” Digital Image Processing and Computer Vision and examples of their application in creative industries, vernacular digital photography, and digital humanities.

2) Data and Knowledge - Knowledge production in the age of "big data." Images as sources of knowledge. Political critique of methods (positivism, abstraction, categorical givens) and goals (surveillance, marketing, positivism). Knowledge of, by and for whom? Data science as the new key technology for production of knowledge and decision making in big data societies. Data visualization as a research method in humanities and social sciences (including art history and political science). From representing reality to representing data. Data art.

3) Crowds and Networks - What are the new forms of sociality and political action enabled by global networks? Networked Images as political instruments. Crowds and the de-centered brain. Crowds and/as a medium of global political action since the Arab Spring. The new body politic as a body without skin. Social networks and computational social science. Social media analytics. Artistic visualizations of social data.



Tuesday, January 14, 2014

O software é a mensagem


Lev Manovich, 2013
Tradução: Cicero Inacio da Silva



No prelo: Journal of Visual Culture, edição especial “Marshall McLuhan’s Understanding Media: The Extensions of Man @ 50" (Primavera de 2014) .


(Nota: algumas partes deste texto estão em meu livro Software Takes Command, Bloomsbury Academic, 2013)
Será que Marshall McLuhan esqueceu dos computadores? Em sua principal obra, Understanding Media: The Extensions of Man (1964) a palavra "computador" aparece 21 vezes, e algumas dessas referências são à "era do computador". Contudo, apesar dessas referências, a sua percepção acerca dos computadores não teve efeito significativo sobre o seu pensamento.
O livro contém duas dezenas de capítulos, cada um dedicado a um determinado meio - que para McLuhan vão da escrita às estradas, até os carros e a televisão (o último capítulo do livro, "Automação", aborda o papel dos computadores no controle industrial, mas não os seus outros papéis).
As razões para esta omissão não são difíceis de entender. As teorias de McLuhan se concentraram nos meios que foram amplamente empregados por pessoas comuns na história da humanidade. Em 1964 os meios de comunicação populares de representação e de comunicação ainda não incluíam os computadores. Embora até o final da década de 1960 os sistemas de computadores aplicados ao design, animação e processamento de texto tenham sido desenvolvidos (em conjunto com a primeira rede de computação que se tornou a Internet), esses sistemas eram usados ​​apenas por pequenas comunidades de cientistas e profissionais. Somente após a introdução do PC, em 1981, é que essas invenções começaram a ser disseminadas para as massas.
Como resultado, o software surgiu como a principal nova forma de mídia fora do tempo (digo "software" em vez de "computadores digitais", porque estes últimos são utilizados ​​para fazer tudo em nossa sociedade, e muitas vezes suas utilizações não envolvem softwares visíveis para os usuários comuns - como os sistemas dentro de um carro). Para além de certas áreas culturais, como o artesanato e as obras de arte, o software substituiu um diversificado leque de tecnologias físicas, mecânicas e eletrônicas utilizadas antes do século XXI para criar, armazenar, distribuir, acessar artefatos culturais e de comunicação entre pessoas. Quando você escreve um artigo no Word, você está usando software. Ao escrever um post de blog no Blogger ou WordPress, você está usando software. Quando você tuíta, posta mensagens no Facebook, pesquisa nos milhões de vídeos no YouTube ou lê textos no Scribd, você utiliza softwares (especificamente sua categoria conhecida como "aplicações web" ou "webware" - softwares que são acessados via web por meio de navegadores e que ficam hospedados em servidores).
As teorias de McLuhan cobriram as principais "novas mídias" de sua época - televisão, jornais e revistas com fotos coloridas, publicidade e cinema. Assim como esses meios, a mídia software levou décadas para se desenvolver e amadurecer até chegar ao ponto onde ele hoje domina a nossa paisagem cultural. De que maneira o uso de aplicativos de criação de mídia profissionais influenciam a imaginação visual contemporânea? De que forma os softwares oferecidos por serviços de mídia social, como o Instagram, modelam as imagens que as pessoas capturam e compartilham? De que maneira os algoritmos específicos do Facebook, aqueles que decidem quais atualizações realizadas por nossos amigos serão mostradas em nosso feed de notícias, moldam a maneira como compreendemos o mundo? De modo mais geral , o que significa viver em uma "sociedade do software"? Em 2002 eu estava em Colônia, na Alemanha, e fui para a melhor livraria da cidade dedicada a livros de ciências humanas e artes. Sua seção de "novas mídias" continha centenas de títulos. No entanto, nem um único livro era dedicado ao motor essencial da "era do computador": o software. Eu comecei a folhear os índices, livro após livro: nenhum deles continha a palavra "software". Como isso era possível? Hoje, graças aos esforços dos meus colegas nesse novo campo acadêmico dos "estudos de software", a situação está gradualmente melhorando. No entanto, quando olhei para os índices de obras de importantes teóricos da mídia do nosso tempo publicados no ano passado, ainda não encontrei a entrada para o termo "software".
O software, como uma categoria teórica, ainda é invisível para a maioria dos acadêmicos, artistas e profissionais da cultura interessados ​​em TI e seus efeitos culturais e sociais.
O Software é a interface para a nossa imaginação e para a do mundo - a linguagem universal através da qual o mundo fala e também o motor universal por meio do qual o mundo funciona. Outro termo que podemos usar na conceituação sobre o software é o de dimensão (pense nas três dimensões que usamos para definir o espaço). Podemos dizer que no final do século XX a humanidade fundamentalmente acrescentou uma nova dimensão à toda a "cultura" - a do software.
Por que essa conceituação é útil? O "Software Cultural" não é simplesmente um novo objeto, não importa quão grande e importante, que foi abandonado no espaço do que chamamos "cultura". E enquanto nós certamente podemos estudar "a cultura do software" - as práticas de programação, os valores e ideologias de programadores e empresas de software, as culturas do Vale do Silício e de Bangalore etc. - se apenas fizermos isso, não vamos compreender a real importância do software. Assim como o alfabeto, a matemática, a indústria gráfica, o motor a combustão, a eletricidade e os circuitos integrados, o software se reorganiza e remodela todas as coisas às quais ele é aplicado, ou pelo menos, têm potencial para fazer isso. Assim como a inserção de uma nova dimensão adiciona novas coordenadas para cada ponto no espaço, “acrescentando" o software à cultura, alteramos a identidade das coisas de que cultura é feita. Nesse sentido, o software é um exemplo perfeito do que McLuhan quis dizer quando escreveu que "a mensagem de qualquer meio ou tecnologia é a mudança de escala, de ritmo ou de padrão que ela introduz nos assuntos humanos".
No entanto, o desenvolvimento e a hegemonia atual do software não se limita a ilustrar perfeitamente os pontos que McLuhan analisou há 50 anos. Ela também desafia estas idéias. Aqui está como.
Nas primeiras décadas, a escrita de novos softwares era um campo para profissionais. No entanto, já na década de 1960, Ted Nelson e Alan Kay propuseram que os computadores poderiam tornar-se um novo tipo de meio cultural. Em seu paradigma, os designers criariam ferramentas de programação e os usuários poderiam inventar novos meios de utilizar essas ferramentas. Nesse sentido, Alan Kay chamou os computadores de a primeira metamídia, cujo conteúdo é "uma ampla variedade de mídias já existentes e que ainda não foram inventadas".
Esse paradigma teve profundas consequências em como o “meio” software funciona hoje em dia. Uma vez que os computadores e a programação foram suficientemente democratizadas, algumas das pessoas mais criativas do nosso tempo começaram a se concentrar na criação de novas estruturas e técnicas ao invés de usar as já existentes para produzir "conteúdos". Durante os anos 2000, estendendo o domínio da metamídia à escrita de novos códigos (softwares), plugins, bibliotecas de programação, entre outras ferramentas, esse fato acabou tornando-se uma nova forma de atividade cultural de ponta.
O GitHub, por exemplo, uma plataforma popular para o compartilhamento e desenvolvimento de ferramentas de código aberto, abriga centenas de milhares de projetos de software. Atualmente criar novas ferramentas de software é atividade fundamental para as áreas de humanidades digitais e software art . E, certamente, as principais "empresas de mídia" do nosso tempo, tais como Google, Facebook, Instagram etc. não criam conteúdo. Em vez disso, constantemente aperfeiçoam e expandem suas ferramentas de software utilizadas por centenas de milhões de pessoas para produzir conteúdo e se comunicar.
Nesse sentido, é hora de atualizar Understanding Media. Hoje em dia já não é o meio que é a mensagem. É o software que é a mensagem. E a expansão constante do que os humanos podem expressar, e como eles podem se comunicar, a partir de agora é o nosso “conteúdo”.

Wednesday, January 1, 2014

Looking back: 2013 publications and projects from Software Studies Initiative



Projects:

Phototrails: Analysis and visualization of 2.3 million Instagram photos shared by people in 13 global cities. Released 7/1/2013. Team: Nadav Hochman, Lev Manovich, Jay Chow.


Exhibitions:

The Aggregate Eye: 13 cities / 312,694 people / 2,353,017 photos. Amelie A. Wallace Gallery, October 29 – December 5, 2013. Artists: Nadav Hochman, Lev Manovich, Jay Chow. Curators: Hyewon Yi and Alise Tifentale.


Books:

Manovich, Lev. Software Takes Command. Bloomsbury Academic, published 7/4/2013. 100,000 words.


Articles and book chapters (13):


Akdag Salah, A.A., L. Manovich, A.A. Salah and J. Chow, "Combining Cultural Analytics and Networks Analysis: Studying a Social Network Site with User-Generated Content." Journal of Broadcasting and Electronic Media, Volume 57, Issue 3, pp. 409-426, 2013.

Hochman, Nadav and Lev Manovich. Visualizing Spatio-Temporal Social Patterns in Instagram Photos. In proceedings of the GeoHCI Workshop in conjunction with ACM CHI 2013. Paris, France, April 2013.

Hochman, Nadav and Manovich, Lev. Zooming into an Instagram City: Reading the local through social media. First Monday, 6/1/2013.

Adelheid Heftberger. "Das Potential der reduktionslosen Visualisierung am Beispiel von DAS ELFTE JAHR und DER MANN MIT DER KAMERA von Dziga Vertov." Chronos-Verlag, Geschichte und Informatik (forthcoming 2014).

Navas, Eduardo. Modular Complexity and Remix: The Collapse of Time and Space into Search. Published in AnthroVision 1.1 (2012); released on softwarestudies.com on 4/19/2013.

Manovich, Lev. Museum Without Walls, Art History without Names: Visualization Methods for Humanities and Media Studies. Oxford Handbook of Sound and Image in Digital Media, edited by Carol Vernallis, Amy Herzog, and John Richardson (Oxford University Press, 2013).

Manovich, Lev. Media Visualization: Visual Techniques for Exploring Large Media Collections. The International Encyclopedia of Media Studies, Volume VI: Media Studies Futures, ed. Kelly Gates, (Blackwell, 2013).

Manovich, Lev. Visualing Vertov. First part published in Russian Journal of Communication (Taylor & Francis); second part to appear in Cinematicity, eds. Jeff Geiger and Karin Littau (Edinburgh University Press). 1/11/2013.

Manovich, Lev. The Language of Media Software. 2/18/2013. Forthcoming in The App Book, eds. Svitlana Matviyenko and Paul Miller (The MIT Press, forthcoming 2014).

Manovich, Lev. Media After Software. Journal of Visual Culture. 4/5/2013.

Manovich, Lev. Visualizing Social Photography. 11/2013. Forthcoming in Aperture #214, winter 2014.

Manovich, Lev. Software is The Message. 12/2013. Forthcoming in Journal of Visual Culture, spring 2014.

Manovich, Lev. The Algorithms of Our Lives. The Chronicle of Higher Education, 12/16/2013.